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Considering the perturbation, the results of theoretical calculation of five Rydberg series energy levels
6s2ns2S1/2 (n = 7− 20), 6s2nd2D3/2 (n = 6− 20), 6s2nd2D5/2 (n = 6− 20), 6s2np2P 0

1/2 (n = 7− 20), and

6s2np2P 0
3/2 (n = 7−20) for Tl I are presented using the weakest bound electron potential model (WBEPM)

theory. Furthermore, the radiative lifetimes of this five series are also calculated. The calculated values of
energy levels and lifetimes are in good agreement with the experimental results.
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Owing to extensive use in astrophysics, laser physics,
physical chemistry, and nuclear fusion etc, the high Ryd-
berg state energy levels and radiative lifetimes of atoms
and ions have been paid more and more attention. Corre-
sponding measurement techniques and theoretical com-
putation methods are also developing quickly, such as
the multi-channel quantum defect theory (MQDT)[1−3],
the fully relativistic Dirac-Hatree-Fock (DHF) method[4],
R-matrix[5,6] etc.. However, in the theoretical methods
mentioned above, calculation work is sometimes rather
complicated, especially for many-valance electron sys-
tems on account of a large number of parameters to be
fitted. While the results of highly excited states are
very good, the deviations of lower ones are significant.
The weakest bound electron potential model (WBEPM)
theory[7−11] developed in recent years is a simple and
effective method in calculating Rydberg state energy lev-
els. It is based on the considerations of successive ion-
ization of free particles (atom and molecule), the choice
of zero of energy in quantum mechanics, and the sepa-
ration of the weakest bound electron (WBE) and non-
weakest bound electrons (NWBEs). In this paper, based
on WBEPM theory, the Rydberg state energy levels
6s2ns2S1/2 (n = 7 − 20), 6s2nd2D3/2 (n = 6 − 20),

6s2nd2D5/2 (n = 6 − 20), 6s2np2P 0
1/2 (n = 7 − 20) and

6s2np2P 0
3/2 (n = 7 − 20) for Tl I are calculated, and the

results agree very well with experimental values. In addi-
tion, the radiative lifetimes for the five series mentioned
above are also calculated, whose results are in good agree-
ment with the experimental values.

For an N -electron atom, N electrons in the system as
WBE are ionized one by one in successive ionization pro-
cesses. In these processes species ionized are the neutral
atom, unit positive ion, · · · , ion with charge +(Z − 1),
and WBEs removed are WBE1, WBE2, · · · , WBEN re-
spectively. So N electrons in an N -electron system can
be treated as N WBEs. In each species ionized there
is only one WBE, and other electrons are not ionized
which are called NWBE. The nucleus and NWBEs can
be regarded as an ion-core, and the WBE is supposed to
move in the central potential field due to the ion-core.
Considering the effect of penetrations, polarization and
shielding, the potential function of WBE is presented as

(in this paper, all the energy terms in expressions are in
Hartree units)[10]

V (ri) =
−Z ′

ri
+
d(d + 1) + 2dl

2r2i
, (1)

where Z ′ is the effective nuclear charge, l is the angular
quantum number of the WBE and d is the parameter.

The corresponding Schrödinger equation of the WBEi
is

[

−
1

2
∇

2
i + V (ri)

]

ψi = εiψi. (2)

By solving the one-electron Schrödinger equation of
WBEi, one can obtain the expression of energy eigen-
value of WBEi:

ε = −
Z ′

2n′2
, (3)

in which, n′ = n + d, n′ is the effective principal quan-
tum number and n is the principal quantum number of
WBEi.

As we know, in an electronic configuration series, each
electronic configuration usually splits into some spectral
terms, and each term splits into several further spectral
levels. So we can use the concept of spectrum-level-like
series to classify the energy levels. A spectrum-level-
like series is a series that is composed of energy levels
with the same spectral level symbol in a given electronic
configuration series of a system. The energy of a level in
spectrum-level-like series can be written as

T (n) ≈ Tlim −
Z ′2

2n′2
= Tlim −

Z ′2

2(n+ d)2
, (4)

where Tlim is the ionization limit. In order to simplify our
calculation process, we can employ the following trans-
formation by employing the representation of energy in
quantum defect theory (QDT):

Z ′

n+ d
=

Znet

n− δn
. (5)

1671-7694/2008/030161-04 c© 2008 Chinese Optics Letters



162 CHINESE OPTICS LETTERS / Vol. 6, No. 3 / March 10, 2008

Table 1. Spectral Coefficients of the Five Energy Level Series for Tl I by Fitting
the Experimental Values in Eq. (8)

Series a1 a2 a3 a4 b1

6s2ns2S1/2 (n = 7 − 20) 4.74335 0.247864 0.308823 −0.285106 −0.000002

6s2nd2D3/2 (n = 6 − 20) 3.11657 −0.0285184 −1.90791 14.7082 −0.000003

6s2nd2D5/2 (n = 6 − 20) 3.12700 −1.36740 20.7985 −93.1322 0.000008

6s2np2P 0
1/2 (n = 7 − 20) 4.25563 −0.183652 7.60464 −26.7257 −0.0000006

6s2np2P 0
3/2 (n = 7 − 20) 4.244937 −6.79801 154.8506 −809.18 −0.000041

Then we get

T (n) = Tlim −
Z2

net

2(n− δn)2
, (6)

where Znet refers to net nuclear-charge number of atomic
core (for neutral atom: Znet = 1). The reasons for do-
ing above are that the WBE moving in the field of the
ion-core is somewhat analogous to the valence electron
in alkali metals, and the QDT provides a feasible way to
study levels in high Rydberg states and Ritz et al. have
done many excellent works on the evaluation of δn. Later
a development of Ritz formula was made by Martin[12],
he founded Martin expression to determine δn:

δn(εn) = a1 + a2m
−2 + a3m

−4 + a4m
−6, (7)

where m = n − δ0 and δ0 is the quantum defect of the
lowest level in a given series.

Many level series are perturbed by foreign levels, while
perturbations are not involved in Martin expression. In
order to solve the significantly perturbed levels, Zhang[10]

consider those levels as follows

δn(εn) =

4
∑

i=1

aim
−2(i−1) +

N
∑

j=1

bj

m−2 − εj
, (8)

in which

m = n− δ0, (9)

εj =
2(Tlim − Tj,per)

Z2
net

, (10)

where Tj,per is the energy of perturbing levels, and j is
the number of the foreign perturbing levels. So we will
use Eqs. (4), (8)—(10) to calculate the energy levels of
TI I with perturbation.

In addition, by means of the calculative formula of ra-
diative lifetime for a many-valance electron atomic (or
ionic) system[13]

τ = τ0(n− δn)α, (11)

where τ0 and α are the coefficients of a given series,
which can be fitted from Eqs. (4), (9) and (11) using
the experimental values of energy level and lifetime, the
theoretical values of lifetime will be obtained.

Five Rydberg spectral series energy levels of Tl I
6s2ns2S1/2 (n = 7 − 20), 6s2nd2D3/2 (n = 6 − 20),

6s2nd2D5/2 (n = 6 − 20), 6s2np2P 0
1/2 (n = 7 − 20) and

6s2np2P 0
3/2 (n = 7 − 20) are calculated by Eqs. (4),

(8)—(10) with the consideration of perturbation coming

from 6s6p2 4P1/2 (45220 cm−1)[14]. The coefficients a1,
a2, a3, a4 and b1 in Eq.(8) fitted with experiment data
from Ref. [14] are listed in Table 1; the coefficients τ0
and α in Eq. (11) are listed in Table 2; the calculated
values using WBEPM and the experimental values of
each energy series namely Tcal and Texp are all listed
in Tables 3 − 5, respectively. In order to compare with
other theoretical calculations, the energy values TDHF

calculated by Biémont[14] using fully relativistic Dirac-
Hatree-Fock (DHF) method are also listed in Tables
3 − 5, respectively. Meanwhile, our calculated values,
the experimental values and the theoretical values using
DHF of radiative lifetime namely τcal, τexp and τDHF are
also listed in Tables 3 − 5. The experimental values of
radiative lifetime are from Refs. [14,15]. The values for
calculating Tcal are 109737.02 cm−1 for R and 49265.91
cm−1 for Tlim

[16].

Table 2. Coefficients of the Five Series for Tl I by
Fitting the Experimental Values in Eq. (11)

Series τ0 α

6s2ns2S1/2 (n = 7 − 20) 0.907402 2.77179

6s2nd2D3/2 (n = 6 − 20) 0.503762 2.70988

6s2nd2D5/2 (n = 6 − 20) 0.183427 3.44603

6s2np2P 0
1/2 (n = 7 − 20) 3.35620 3.01344

6s2np2P 0
3/2 (n = 7 − 20) 2.21675 3.03623

Table 3. Theoretical and Experimental Energy
(cm−1) and Lifetime (ns) Values of 6s2ns2S1/2

n Texp
[14] Tcal Difference τexp

[14] τcal τDHF
[14]

7 26477.5 26477.5 0 7.3 ± 0.4 7.46 6.79

8 38745.9 38745.6 −0.3 25 ± 2 21.75 21.59

9 43166.2 43166.8 0.6 54 ± 4 46.33 57.03

10 45296.8 45295.8 −1.0 50 ± 4 83.66 53.32

11 46456.9 46456.5 −0.4 145 ± 10 135.67 120.3

12 47178.9 47179.1 0.2 225 ± 20 204.49 210.4

13 47654.7 47654.2 −0.5 310 ± 30 292.23 329.4

14 47983.2 47984.4 1.2 410 ± 50 400.91 481.1

15 48222.3 532.48

16 48399.6 688.86

17 48535.2 871.91

18 48641.3 1083.42

19 48725.9 1325.20

20 48794.4 1598.98
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Table 4. Theoretical and Experimental Energy (cm−1) and Lifetime (ns) Values of 6s2nd2D3/2,5/2

n
6s2nd2D3/2 6s2nd2D5/2

Texp
[14] Tcal Difference τexp

[14] τcal τDHF
[14] Texp

[14] Tcal Difference τexp
[14] τcal τDHF

[14]

6 36117.9 36117.9 0 8.5 ± 0.5 8.93 5.9 36199.9 36199.9 0 7.2 ± 0.6 7.18 11.09

7 42011.4 42012.1 0.7 20.5 ± 1.5 19.99 16.48 42049.0 42048.1 −0.9 19.8 ± 1.5 19.95 27.25

8 44672.6 44672.0 −0.6 45 ± 5 37.12 37.12 44692.7 44693.5 0.8 44.0 ± 4 43.81 57.93

9 46098.5 46097.5 −1.0 56 ± 6 61.40 71.79 46110.3 46111.7 1.4 83.06 108.5

10 46949.9 46950.6 0.7 81 ± 9 93.92 125.0 46958.0 46954.5 −3.5 141.93 185.3

11 47499.8 47500.5 0.7 130 ± 20 135.62 202.2 47504.1 47502.0 −2.1 226.12 296.0

12 47876.0 47875.5 −0.5 210 ± 30 187.43 311.1 47876.0 47875.9 −0.1 340.88 452.3

13 48142.6 250.24 48142.5 491.97

14 48339.5 324.91 48339.2 685.46

15 48488.8 412.29 48488.5 927.70

16 48604.8 513.20 48604.4 1225.30

17 48696.6 628.44 48696.2 1585.12

18 48770.5 758.78 48770.2 2014.28

19 48830.9 904.99 48830.6 2520.12

20 48880.9 1067.82 48880.7 3110.49

Table 5. Theoretical and Experimental Energy (cm−1) and Lifetime (ns) Values of 6s2np2P0

1/2,3/2

n
6s2np2P 0

1/2 6s2np2P 0
3/2

Texp
[14] Tcal Difference τexp

[15] τcal τDHF
[14] Texp

[14] Tcal Difference τexp
[15] τcal τDHF

[14]

7 34159.9 34159.9 0 63.1 ± 1.7 66.60 59.36 35161.1 35161.1 0 48.6 ± 1.3 49.93 41.11

8 41368.1 41368.1 0 184.1 ± 4.4 176.93 157.4 41470.8 41470.8 0 127.7 ± 4.9 125.84 125.3

9 44380.9 44380.9 0 391.1 ± 21.8 364.89 323.1 44562.5 44562.5 0 273.6 ± 13.5 264.49 277.2

10 45939.3 45939.3 0 656.8 ± 14.5 651.0 570.6 46043.6 46043.6 0 480.8 ± 31.6 469.63 509.4

11 46853.8 46853.8 0 991.1 ± 50.8 1056.63 929.6 46917.1 46917.1 0 725.5 ± 28.8 758.96 854.2

12 47436.7 1602.98 47474.5 1145.03

13 47831.1 2311.32 47854.4 1644.19

14 48110.5 3202.92 48125.3 2272.23

15 48315.5 4299.06 48325.3 3044.83

16 48470.4 5621.07 48477.1 3977.63

17 48590.4 7190.24 48595.0 5086.26

18 48685.1 9027.97 48688.5 6386.33

19 48761.2 11155.6 48763.7 7893.50

20 48823.3 13594.5 48825.1 9623.47

Tables 3 − 5 show that our calculating energy levels
are very close to the experimental data, with an abso-
lute deviation generally no more than 3.5 cm−1 and a
relative deviation generally no more than 7.45 × 10−3%.
Furthermore, our accuracy is better than Biémont’s[14].
The much higher energy levels, in comparison experi-
mental values unavailable, are predicted in the tables
mentioned above. Considering the high accuracy of the
foregoing calculated values, our forecasted values are
reliable. Moreover, our calculating radiative lifetimes,
whose accuracy is better than Ref. [14], also agree well
with the experimental values except for the 6s210s2S1/2

level (τexp = 40 ± 10 ns[14]). Its main reason is that the
perturbation coming from 6s6p2 4P1/2 (45220 cm−1) is
very strong.

In conclusion, WBEPM theory is an effective and
suitable method for studying the spectral series of the
many-valence electron Tl I, whose computing process is
both compact and accurate and needs fitting few pa-
rameters. No matter how the principal quantum number
n is large or small, the calculated results are in good
agreement with the experimental data. So this method
can be applied to study the Rydberg spectra for other
many-valence electron atoms or ions.
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